Leptin-stimulated K\textsubscript{ATP} channel trafficking
A new paradigm for β-cell stimulus-secretion coupling?

George G Holz1,2,*, Oleg G Chepurny1, and Colin A Leech1

1Department of Medicine; State University of New York (SUNY); Upstate Medical University; Syracuse, NY USA
2Department of Pharmacology; State University of New York (SUNY); Upstate Medical University; Syracuse, NY USA

Insulin secretion from pancreatic β-cells is initiated by the closure of ATP-sensitive K+ channels (K\textsubscript{ATP}) in response to high concentrations of glucose, and this action of glucose is counteracted by the hormone leptin, an adipokine that signals through the Ob-R\textsubscript{b} receptor to increase K\textsubscript{ATP} channel activity. Despite intensive investigations, the molecular basis for K\textsubscript{ATP} channel regulation remains uncertain, particularly from the standpoint of whether fluctuations in plasma membrane K\textsubscript{ATP} channel content underlie alterations of K\textsubscript{ATP} channel activity in response to glucose or leptin. Surprisingly, newly published findings reveal that leptin stimulates AMP-activated protein kinase (AMPK) in order to promote trafficking of K\textsubscript{ATP} channels from cytosolic vesicles to the plasma membrane of β-cells. This action of leptin is mimicked by low concentrations of glucose that also activate AMPK and that inhibit insulin secretion. Thus, a new paradigm for β-cell stimulus-secretion coupling is suggested in which leptin exerts a tonic inhibitory effect on β-cell excitability by virtue of its ability to increase plasma membrane K\textsubscript{ATP} channel density/current, thereby favoring β-cell depolarization and insulin secretion. Such an AMPK-dependent action of glucose would complement its established ability to generate an increase of ATP/ADP concentration ratio that directly closes K\textsubscript{ATP} channels in the plasma membrane.

Leptin, a product of the LEP/Ob gene, is an “obesity hormone” secreted from adipocytes in direct proportion to body fat mass.1 Leptin stimulates the activity of ATP-sensitive K+ channels (K\textsubscript{ATP}) in pancreatic β-cells,2 insulin-secreting cell lines,3,4 and hypothalamic glucose-responsive neurons.5 As expected for a hormone that reduces β-cell excitability, leptin also inhibits insulin secretion from the islets of Langerhans.2,5,6 Although the stimulatory action of leptin at β-cell K\textsubscript{ATP} channels was first discovered by Kieffer and coworkers in 1997,7 uncertainty exists concerning exactly how this effect is achieved. New insights are now provided by the report of Park and coworkers in which leptin stimulates trafficking of K\textsubscript{ATP} channels from cytosolic vesicles to the plasma membrane of β-cells.7 This unexpected action of leptin produces increased K\textsubscript{ATP} channel activity as measured using the patch clamp technique, and its existence provides a new “K\textsubscript{ATP} trafficking” paradigm for our understanding of β-cell stimulus-secretion coupling (Fig. 1).

Prior to the report of Park et al. it was generally assumed that leptin binds β-cell Ob-R\textsubscript{b} receptors in order to exert a stimulatory effect at K\textsubscript{ATP} channels present...
in the plasma membrane.8,10 This effect of leptin might be explained by its ability to increase plasma membrane levels of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)\textsubscript{3}), a polyphosphoinositide that exerts a direct stimulatory action at K\textsubscript{ATP} channels.11-13 Additional actions of leptin potentially relevant to K\textsubscript{ATP} channel regulation are its abilities to lower levels of cytosolic ATP,14 to stimulate intracellular phosphotransfer networks,15 to activate cyclic nucleotide phosphodiesterase 3B (PDE3B),16 and to promote cytoskeletal remodeling.13,14,17 What was unexpected is that leptin exerts a stimulatory effect on β-cell vesicular transport so that K\textsubscript{ATP} channels within these vesicles will traffic to the plasma membrane.

This trafficking action of leptin is measurable using cell surface immunochemical or biotinylation assays that detect the Kir6.2 or SUR1 subunits of β-cell K\textsubscript{ATP} channels.7 It occurs with a characteristic delay and is partially reversible due to retrieval of K\textsubscript{ATP} channels via endocytosis. Notably, the time course of leptin-induced K\textsubscript{ATP} channel trafficking is in agreement with prior patch clamp measurements of single K\textsubscript{ATP} channel activity in which an ca. 4 min delay was measured between administration of leptin and the detection of increased K\textsubscript{ATP} channel activity in cell-attached patches of β-cell plasma membrane.2 Importantly, the vesicles that undergo trafficking in response to leptin do not correspond to insulin-containing secretory granules. Rather, Park et al. report that they contain a marker (EEA1) for early endosomes,7 so they may participate in endosome recycling.18

Recently, Chen et. al19 confirmed the findings of Park et al.,7 and both groups agree that trafficking of K\textsubscript{ATP} channels to the plasma membrane results from an ability of leptin to stimulate the activity of AMP-activated protein kinase (AMPK). Such findings are remarkable in view of a prior report that AMPK mediates K\textsubscript{ATP} channel trafficking under conditions in which β-cells are chronically exposed to low levels of glucose.20 Thus, an inhibition of insulin secretion may result from long-term effects of leptin and low glucose to promote AMPK-mediated trafficking of K\textsubscript{ATP} channels to the plasma membrane (Fig. 1).

Figure 1. Park et al. propose that binding of leptin (Lep) to its receptor (Ob-R\textsubscript{b}) on β-cells activates TRPC4 cation channels.2 This action of leptin might be mediated by a Jak2-P13K-PLC\textsubscript{y} pathway, as is reported to be the case for hypothalamic neurons.21 Park et al. also propose that Ca2+ influx through TRPC4 activates CaMKK\textsubscript{b} in order to phosphorylate and stimulate AMP-activated protein kinase (AMPK).2 We propose that the stimulatory action of leptin at AMPK might be counteracted by cAMP-elevating agents such as GLP-1 since PK\textalpha inhibits a MPK inhibitory effects. Forming subunit of K\textsubscript{ATP} channel trafficking provides additional insights concerning how AMPK might serve as a metabolic sensor to detect the Kir6.2 or SUR1 subunits that detect the Kir6.2 or SUR1 subunits of β-cell K\textsubscript{ATP} channels.7 This finding implies that remodeling of the cortical actin barrier allows vesicles containing K\textsubscript{ATP} channels.
to approach and insert into the plasma membrane (Fig. 1). What is unclear is whether high levels of glucose counteract this AMPK-dependent actin remodeling in order to favor endocytosis over vesicle insertion of K_{ATP} channels. Intriguingly, the actin-binding protein cofillin is capable of either depolymerizing or polymerizing actin in order to remodel cortical actin. Since cofillin is regulated by AMPK in various cell types, cofillin might mediate K_{ATP} trafficking in response to leptin and/or glucose (Fig. 1).

When evaluating the recently published findings concerning K_{ATP} trafficking, several uncertainties remain. Park et al. report that leptin activates TRPC4 cation channels in order to promote Ca^{2+} influx that activates AMPK in a Ca^{2+}/calmodulin kinase kinase-β (CaMKKβ) dependent manner (Fig. 1). However, no such Ca^{2+}-elevating action of leptin was observed in prior studies of β-cells. In a more recent report, Park et al. also propose that AMPK activates glycolgen synthase kinase 3-β (GSK3β) in order to stimulate K_{ATP} channel trafficking, yet how this effect is achieved is not defined. Furthermore, AMPK signaling through GSK3β is proposed to inhibit the phosphatase and tensin homolog PTEN in order to stimulate trafficking of K_{ATP} channels. The recent analysis of PTEN reveals that its protein phosphatase activity is important to K_{ATP} channel trafficking, yet the substrate protein dephosphorylated by PTEN remains unknown. Since PTEN is also a lipid phosphatase that dephosphorylates PtdIns(3,4,5)P_3, and since PtdIns(3,4,5)P_3 stimulates K_{ATP} channel activity in β-cells, a situation may exist in which AMPK-mediated inhibition of PTEN by leptin allows leptin to exert a dual effect—it may promote K_{ATP} channel trafficking to the plasma membrane while also activating K_{ATP} channels already in the plasma membrane.

When evaluating whether leptin exerts a vesicular trafficking-independent effect to activate K_{ATP} channels, Chen et al. report that leptin pretreatment does not alter the ATP or ADP sensitivity of K_{ATP} channels in excised inside-out patches of plasma membrane. This finding is interpreted to indicate that leptin has no membrane-delimited action to directly stimulate K_{ATP} channel activity, a conclusion that is seemingly at odds with prior studies of the Ashford laboratory in which plasma membrane PtdIns(3,4,5)P_3 activates K_{ATP} channels. However, assays of K_{ATP} channel activity in excised inside-out patches are complicated by “wash-out” phenomena in which intracellular factors important to K_{ATP} channel regulation diffuse away or become inactive when the cytosolic face of a patch is exposed to a bath solution. For this reason, a membrane-delimited action of leptin to stimulate K_{ATP} channel activity, and to possibly modulate the channel’s ATP and/or ADP sensitivity, cannot be excluded.

It is interesting to note that Chen et al. found that K_{ATP} trafficking is stimulated not simply by leptin, but also by the cAMP-elevating agent forskolin in β-cells. This finding is counterintuitive in view of the fact that leptin activates PDE3B in order to reduce levels of cAMP. Since a knockout of leptin receptor gene expression raises levels of cAMP in β-cells while also enhancing GSIS, it seems unlikely that cAMP would reproduce the action of leptin to increase K_{ATP} channel expression in the plasma membrane. In fact, cAMP-elevating agents such glucagon-like peptide-1 (GLP-1) synergize with glucose metabolism to inhibit K_{ATP} channel activity, to raise levels of Ca^{2+}, and to potentiate GSIS. Thus, leptin and GLP-1 are normally considered to be counter regulatory hormones for the control of insulin secretion. These considerations raise an important issue—how could it be that cAMP-elevating agent forskolin reproduces the K_{ATP} trafficking action of leptin, yet unlike leptin, forskolin stimulates insulin secretion rather than inhibits it? Clearly, new studies are warranted in order to determine if the K_{ATP} trafficking stimulated by leptin and cAMP-elevating agents is of physiological significance to the control of insulin secretion.

Finally, it should be noted that an earlier study of Yang and coworkers provides evidence for a cAMP and Ca^{2+} dependent action of high glucose to stimulate K_{ATP} channel trafficking to the plasma membrane of β-cells. This trafficking involves dense core vesicles that are chromogranin-positive but insulin-negative. Although a role for AMPK in support of this vesicle trafficking was not evaluated, such a surprising observation is clearly at odds with the findings of Park et al. and Lim et al. demonstrating vesicular K_{ATP} channel trafficking in response to low glucose. Despite these multiple uncertainties, it seems clear that the hormonal and metabolic regulation of K_{ATP} channel trafficking constitutes an emerging field of potentially high significance to β-cell biology.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
This work was supported by American Diabetes Association Basic Science Awards to Holz GG (7-12-BS-077) and Lecch CA (1-12-BS-109). Chepurny OG acknowledges support of SUNY Upstate Medical University. Holz GG serves as guarantor.

Author Contributions
Holz GG wrote the manuscript. Chepurny OG and Lecch CA edited the manuscript. Lecch CA created Figure 1.

References
1. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998; 395:763-70; PMID:9796811; http://dx.doi.org/10.1038/27576

www.landesbioscience.com Islets 3

Lam NT, Cheung AT, Riedel MJ, Light PE, Cheeseman CI, Kieffer TJ. Leptin reduces glucose transport and cellular ATP levels in INS-1 pancreatic β-cells. EMBO J 2006; 25:2377-87; PMID:16675953; http://dx.doi.org/10.1038/sj.emboj.7601188.

Chen PC, Kryukova YM, Shyng SL. Leptin regulates KATP channel trafficking in pancreatic β-cells by a signaling mechanism involving AMPK and PKA. J Biol Chem 2013; PMID:24100028.
